Уравнения движения систем со цилиндрическими, универсальными и сферическими шарнирами (метод Й. Виттенбурга)

Юдинцев В. В. Кафедра теоретической механики

Самарский государственный аэрокосмический университет им. академика С. П. Королёва (национальный исследовательский университет)

25 марта 2016 г.

Уравнения движения

Уравнения движения системы со сферическими шарнирами:

$$\sum_{j=1}^{n} \mathbf{K}_{ij} \dot{\boldsymbol{\omega}}_{j} = \mathbf{M}'_{i} + \mathbf{M}_{i} + \sum_{a=1}^{n} S_{ia} \mathbf{Y}_{a}, \ i = 1, \dots, n$$

- Для систем со сферическими шарнирами угловые скорости ω_j независимы, так как сферические шарниры не ограничивают относительную угловую скорость смежных тел.
- Для систем с универсальными и цилиндрическими шарнирами угловые скорости *ω_j* не являются независимыми и определяются возможным относительным движением смежных тел.

Кинематика относительного движения

Системы с цилиндрическими и универсальными шарнирами

- Угловые скорости смежных тел зависимы.
- Цилиндрический шарнир: 1 степень свободы.
- Универсальный шарнир: 2 степени свободы.
- Сферический шарнир: 3 степени свободы.

Обобщенные координаты

Угловые скорости выражаются через производные шарнирных координат $\dot{q}_{\alpha i}$. В качестве обобщенных координат используются углы относительного поворота смежных тел (углы Эйлера, Брайнта, ...).

• Для цилиндрического шарнира lpha необходимо задать один угол:

$$\mathbf{q}_{\alpha} = [\varphi_{\alpha 1}]^T.$$

• Для универсального шарнира – два угла:

$$\mathbf{q}_{\alpha} = [\varphi_{\alpha 1}, \varphi_{\alpha 2}]^T.$$

• Для сферического шарнира – три угла:

$$\mathbf{q}_{\alpha} = [\varphi_{\alpha 1}, \varphi_{\alpha 2}, \varphi_{\alpha 3}]^T.$$

Шарнирные координаты цилиндрического шарнира

Кафедра ТМ (СГАУ)

Шарнирные координаты сферического шарнира

Углы Эйлера

Матрицы поворота

Матрицы ортогонального преобразования (матрицы поворота) для преобразования координат из базиса одного тела в базис другого (смежного) выражаются через обобщенные координаты.

- A^{01} матрица преобразования координат из базиса тела 1 в базис тела 0: $r^{(0)} = A^{01}r^{(1)}$.
- \mathbf{A}^{12} матрица преобразования координат из базиса 2 в базис 1.

Матрица поворота для цилиндрического шарнира

Кафедра ТМ (СГАУ)

Универсальные шарниры

Относительная угловая скорость $\mathbf{\Omega}_{lpha}$

 Ω_{α} – угловая скорость тела $i^{-}(\alpha)$ относительно $i^{+}(\alpha)$. Выражение угловой скорости через обобщенные скорости (кинематические уранвения):

$$\mathbf{\Omega}_{\alpha} = \sum_{i=1}^{n_{\alpha}} \mathbf{p}_{\alpha i} \dot{\varphi}_{\alpha i}, \alpha = 1, \dots, n,$$
(2)

- *n*_{\alpha} число степеней свободы в шарнире;
- $\mathbf{p}_{\alpha i}$ единичные векторы, направленные вдоль осей вращения; для цилиндрического шарнира $n_{\alpha} = 1$ и существует один вектор $\mathbf{p}_{\alpha i}$ вокруг которого происходит вращение смежных тел $i^+(\alpha)$ и $i^-(\alpha)$.
- В общем случае координаты векторов $\mathbf{p}_{\alpha i}^{(i^-(\alpha))}$ являются функциями обобщенных координат $\varphi_{\alpha i}$.

Единичные векторы $\mathbf{p}_{lpha i}$ для цилиндрического шарнира

• Для цилиндрического шарнира вектор $\mathbf{p}_{\alpha i}^{(i^-(\alpha))}=const.$

Для шарнира 3:
$$\mathbf{p}_{31}^{(3)}=(0,0,1)^T$$

Кафедра ТМ (СГАУ)

Единичные векторы $\mathbf{p}_{lpha i}$ для сферического шарнира

Единичные векторы $\mathbf{p}_{lpha i}$ для сферического шарнира

Кафедра ТМ (СГАУ)

Единичные векторы $\mathbf{p}_{lpha i}$ для сферического шарнира

 $\mathbf{p}_{21}^{(2)} = (\sin\varphi_{22}\sin\varphi_{23}, \, \sin\varphi_{22}\cos\varphi_{23}, \, \cos\varphi_{22})^T.$

Относительное угловое ускорение

Угловое ускорение тела $i^-(\alpha)$ относительно $i^+(\alpha)$:

$$\overset{\circ}{\mathbf{\Omega}}_{\alpha} = \sum_{i=1}^{n_{\alpha}} \left(\mathbf{p}_{\alpha i} \ddot{\varphi}_{\alpha i} + \sum_{j=1}^{n_{\alpha}} \frac{\partial \mathbf{p}_{\alpha i}}{\partial \varphi_{\alpha j}} \dot{\varphi}_{\alpha i} \dot{\varphi}_{\alpha j} \right), \alpha = 1, \dots, n.$$
(3)

Выделив члены со старшими производными, получим

$$\overset{\circ}{\mathbf{\Omega}}_{\alpha} = \sum_{i=1}^{n_{\alpha}} \mathbf{p}_{\alpha i} \ddot{\varphi}_{\alpha i} + \boldsymbol{\phi}_{\alpha}, \ \alpha = 1, \dots, n,$$
(4)

где

$$\phi_{\alpha} = \sum_{i=1}^{n_{\alpha}} \sum_{j=1}^{n_{\alpha}} \frac{\partial \mathbf{p}_{\alpha i}}{\partial \varphi_{\alpha j}} \dot{\varphi}_{\alpha i} \dot{\varphi}_{\alpha j}, \ \alpha = 1, \dots, n.$$
(5)

Сферический шарнир

Угловая скорость тела 2 относительно тела 1 в базисе тела 2:

$$\boldsymbol{\Omega}_{2}^{(2)} = \mathbf{p}_{21}^{(2)} \dot{\varphi}_{21} + \mathbf{p}_{22}^{(2)} \dot{\varphi}_{22} + \mathbf{p}_{23}^{(2)} \dot{\varphi}_{23} = \begin{bmatrix} \sin \varphi_{22} \sin \varphi_{23} \\ \sin \varphi_{22} \cos \varphi_{23} \\ \cos \varphi_{22} \end{bmatrix} \dot{\varphi}_{21} + \begin{bmatrix} \cos \varphi_{23} \\ -\sin \varphi_{23} \\ 0 \end{bmatrix} \dot{\varphi}_{22} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \dot{\varphi}_{23} \quad (6)$$

Угловое ускорение тела 2 относительно тела 1 в базисе тела 2:

$$\hat{\Omega}_{2}^{(2)} = \mathbf{p}_{21}^{(2)} \ddot{\varphi}_{21} + \mathbf{p}_{22}^{(2)} \ddot{\varphi}_{22} + \mathbf{p}_{23}^{(2)} \ddot{\varphi}_{23} + \begin{bmatrix} \cos \varphi_{22} \sin \varphi_{23} \\ \cos \varphi_{22} \cos \varphi_{23} \\ -\sin \varphi_{22} \end{bmatrix} \dot{\varphi}_{21} \dot{\varphi}_{22} + \\
+ \begin{bmatrix} \sin \varphi_{22} \cos \varphi_{23} \\ -\sin \varphi_{22} \sin \varphi_{23} \\ 0 \end{bmatrix} \dot{\varphi}_{21} \dot{\varphi}_{23} + \begin{bmatrix} -\sin \varphi_{23} \\ -\cos \varphi_{23} \\ 0 \end{bmatrix} \dot{\varphi}_{22} \dot{\varphi}_{23} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \dot{\varphi}_{23} \quad (7)$$

Кафедра ТМ (СГАУ)

Абсолютное движение

Абсолютная угловая скорость

Относительная и абсолютная скорости связаны следующим отношением:

$$\mathbf{\Omega}_{\alpha} = \boldsymbol{\omega}_{i^{-}(\alpha)} - \boldsymbol{\omega}_{i^{+}(\alpha)}, \ \alpha = 1, \dots, n.$$
(8)

или:

$$\boldsymbol{\Omega}_{\alpha} = -\sum_{i=0}^{n} S_{i\alpha} \boldsymbol{\omega}_{i} = -S_{0\alpha} \boldsymbol{\omega}_{0} - \sum_{i=1}^{n} S_{i\alpha} \boldsymbol{\omega}_{i} \ \alpha = 1, \dots, n.$$
(9)

В матричной форме:

$$\mathbf{\Omega} = -\boldsymbol{\omega}_0 \mathbf{S}_0^T - \mathbf{S}^T \boldsymbol{\omega}, \tag{10}$$

где $\Omega = [\Omega_1 \dots \Omega_n]^T$ и $\omega = [\omega_1 \dots \omega_n]^T$ - матрицы-столбцы относительных и абсолютных скоростей.

Абсолютная угловая скорость

Учитывая тождество

$$\mathbf{T}^T \mathbf{S}^T = \mathbf{E}$$

умножим последнее выражение слева на \mathbf{T}^T , что позволит выразить матрицу абсолютных угловых скоростей:

$$\boldsymbol{\omega} = -\mathbf{T}^T \boldsymbol{\Omega} + \boldsymbol{\omega}_0 \mathbf{1}_n \tag{11}$$

и угловую скорость каждого тела:

$$\boldsymbol{\omega}_i = -\sum_{a=1}^n T_{ai} \boldsymbol{\Omega}_a + \boldsymbol{\omega}_0, \ a = 1, \dots n.$$
 (12)

Абсолютное угловое ускорение

Продифференцировав (12), получим абсолютное угловое ускорение:

$$\dot{\boldsymbol{\omega}}_i = -\sum_{a=1}^n T_{ai}(\overset{\circ}{\boldsymbol{\Omega}}_a + \boldsymbol{\omega}_a^*) + \boldsymbol{\omega}_0, \ a = 1, \dots, n,$$
(13)

где

$$\boldsymbol{\omega}_a^* = \boldsymbol{\omega}_{i^-(a)} \times \boldsymbol{\Omega}_a \ a = 1, \dots, n.$$
(14)

Уравнение можно переписать в матричной форме:

$$\dot{\boldsymbol{\omega}} = -\mathbf{T}^T (\stackrel{\circ}{\boldsymbol{\Omega}} + \boldsymbol{\omega}^*) + \dot{\omega}_0 \mathbf{1}_n.$$
(15)

Абсолютное угловое ускорение

Матрица-столбец относительных угловых ускорений определяется следующим образом:

$$\overset{\circ}{\mathbf{\Omega}} = \mathbf{p}^T \ddot{\boldsymbol{\varphi}} + \boldsymbol{\phi},\tag{16}$$

где $\ddot{\varphi} = [\ddot{\varphi}_{11}, \dots, \ddot{\varphi}_{1n_1}, \dots, \ddot{\varphi}_{n1}, \dots, \ddot{\varphi}_{nn_n}]^T$; **р** - блочно-диагональная матрица:

Каждый столбец блочной матрицы **p** соответствует одному шарниру, а количество строк равно суммарному числу степеней свободы во всех шарнирах.

Абсолютное угловое ускорение

Подставив относительное угловое ускорение

$$\stackrel{\circ}{\mathbf{\Omega}} = \mathbf{p}^T \ddot{\boldsymbol{\varphi}} + \boldsymbol{\phi} \tag{18}$$

в выражение для абсолютного ускорения

$$\dot{\boldsymbol{\omega}} = -\mathbf{T}^T(\overset{\circ}{\boldsymbol{\Omega}} + \boldsymbol{\omega}^*) + \dot{\boldsymbol{\omega}}_0 \mathbf{1}_n, \tag{19}$$

получим

$$\dot{\boldsymbol{\omega}} = -\mathbf{T}^T (\mathbf{p}^T \ddot{\boldsymbol{\varphi}} + \boldsymbol{f}) + \dot{\boldsymbol{\omega}}_0 \mathbf{1}_n, \tag{20}$$

где

$$oldsymbol{f}=oldsymbol{\phi}+oldsymbol{\omega}^*.$$

Уравнения движения системы

Уравнения движения для систем со сферическими шарнирами дополняются моментами реакций:

$$\sum_{j=1}^{n} \mathbf{K}_{ij} \dot{\boldsymbol{\omega}}_{j} = \mathbf{M}'_{i} + \mathbf{M}_{i} + \sum_{a=1}^{n} \mathbf{S}_{ia} (\mathbf{Y}_{a} + \mathbf{Y}^{c}_{a}), \ i = 1, \dots, n,$$
(21)

 \mathbf{Y}_a^c - дополнительные моменты реакций в цилиндрических и универсальных шарнирах.

Матричная форма уравнения (21):

$$\mathbf{K}\dot{\boldsymbol{\omega}} = \mathbf{M}' + \mathbf{M} + \mathbf{S}(\mathbf{Y} + \mathbf{Y}^c). \tag{22}$$

Момент реакции

Подставим полученные матрицы угловых ускорений и скоростей в (22):

$$\mathbf{K}\left(-\mathbf{T}^{T}(\mathbf{p}^{T}\ddot{\boldsymbol{\varphi}}+\mathbf{f})+\dot{\omega_{0}}\mathbf{1}_{n}\right)=\mathbf{M}'+\mathbf{M}+\mathbf{S}(\mathbf{Y}+\mathbf{Y}^{c}).$$
(23)

Для исключения из (23) моментов реакции \mathbf{Y}^{c} , умножим уравнение (23) слева на \mathbf{T} :

$$\mathbf{Y}_{c} = \mathbf{T} \left(\mathbf{K} \left(-\mathbf{T}^{T} (\mathbf{p}^{T} \ddot{\boldsymbol{\varphi}} + \mathbf{f}) + \dot{\boldsymbol{\omega}}_{0} \mathbf{1}_{n} \right) - \mathbf{M}' - \mathbf{M} \right) - \mathbf{Y}.$$
(24)

Уравнения движения

Моменты реакции \mathbf{Y}_a^c , составляющие матрицу \mathbf{Y}_c , ортогональны соответствующим осям вращения, которые образуют цилиндрический или универсальный шарниры:

$$\mathbf{Y}_{\alpha}^{c}\cdot\mathbf{p}_{\alpha}=0$$

Кафедра ТМ (СГАУ)

Уравнения движения

Умножив выражение

$$\mathbf{Y}_{c} = \mathbf{T} \left(\mathbf{K} \left(-\mathbf{T}^{T} (\mathbf{p}^{T} \ddot{\boldsymbol{\varphi}} + \mathbf{f}) + \dot{\boldsymbol{\omega}}_{0} \mathbf{1}_{n} \right) - \mathbf{M}' - \mathbf{M} \right) - \mathbf{Y}.$$
(25)

на матрицу **p**, получим уравнения движения механических систем с цилиндрическими, универсальными и сферическими шарнирами:

$$\mathbf{A}\ddot{\boldsymbol{\varphi}} = \mathbf{B},\tag{26}$$

где

$$\mathbf{A} = (\mathbf{pT}) \cdot \mathbf{K} \cdot (\mathbf{pT})^T, \tag{27}$$

$$\mathbf{B} = -(\mathbf{pT}) \left(\mathbf{K} (\mathbf{T}^T \mathbf{f} - \dot{\boldsymbol{\omega}}_0 \mathbf{1}_n) + \mathbf{M}' + \mathbf{M} \right) - \mathbf{pY}.$$
 (28)

$$\mathbf{K}_{ij} = \begin{cases} \mathbf{K}_i, & i = j, \\ M(\mathbf{b}_{j0} \cdot \mathbf{d}_{ij}\mathbf{E} - \mathbf{b}_{j0}\mathbf{d}_{ij}), & s_i < s_j, \\ M(\mathbf{d}_{ji} \cdot \mathbf{b}_{i0}\mathbf{E} - \mathbf{d}_{ji}\mathbf{b}_{i0}), & s_j < s_i, \\ 0, & \mathsf{в} \text{ других случаях.} \end{cases}$$
(29)

$$\mathbf{K}_{i} = \mathbf{J}_{i} + \sum_{k=1}^{n} m_{k} (\mathbf{d}_{ik}^{2} \mathbf{E} - \mathbf{d}_{ik} \mathbf{d}_{ik}), \ i = 1, \dots, n.$$
(30)

$$\mathbf{M}'_{i} = -\boldsymbol{\omega}_{i} \times \mathbf{K}_{i} \cdot \boldsymbol{\omega}_{i} - M \left[\sum_{j:s_{i} < s_{j}} \mathbf{d}_{ij} \times (\boldsymbol{\omega}_{j} \times (\boldsymbol{\omega}_{j} \times \mathbf{b}_{j0})) + \mathbf{b}_{i0} \times \left(\sum_{j:s_{j} < s_{i}} \boldsymbol{\omega}_{j} \times (\boldsymbol{\omega}_{j} \times \mathbf{d}_{ji}) - \ddot{\mathbf{r}}_{0} \right) \right] - \sum_{j:s_{i} \leq s_{j}} \mathbf{d}_{ij} \times \mathbf{F}_{j}, \ i = 1, \dots n.$$

Построение уравнений

Геометрические параметры

- Длины звеньев l_1, l_2, l_3 .
- Расположение шарниров.

Структура системы

- Построение ориентированного правильно пронумерованный граф, описывающий структуру системы.
- Построение матрицы инцидентности S₀, S.
- Построение матрицы Т.
- Таблица функций $i^+(\alpha)$, $i^-(\alpha)$.

Системы координат

• Выбор расположения осей центральной системы координат для каждого тела.

Шарнирные векторы

- Определение координат шарнирных векторов $\mathbf{c}_{ilpha}^{(i)}$ для каждого тела.
- Вектор $\mathbf{c}_{i\alpha}^{(i)}$ направлен из центра масс тела i к шарнирной точке α , если шарнирная точка α принадлежит телу i. В противном случае вектор $\mathbf{c}_{i\alpha}^{(i)} = \mathbf{0}$

Векторы \mathbf{d}_{ij}

ullet Вычислить координаты векторов \mathbf{d}_{ij} в базисе тела i

$$\mathbf{d}_{ij} = \sum_{a=1}^{n} T_{ai} S_{ja} \mathbf{c}_{ja}, \ i, j = 1, \dots n$$

Инерционно-массовые параметры

• Задать массы тел

$$m_1 = \ldots, m_2 = \ldots, m_3 = \ldots$$

• Задать тензоры инерции каждого тела относительно центральных осей

$$\mathbf{J}_{1}^{(1)} = \begin{bmatrix} J_{1xx}^{(1)} & 0 & 0\\ 0 & J_{1yy}^{(1)} & 0\\ 0 & 0 & J_{1zz}^{(1)} \end{bmatrix}, \ \mathbf{J}_{2}^{(2)} = \dots, \ \mathbf{J}_{3}^{(3)} = \dots$$

Определение положение барицентра

- Для определения векторов b_{i0} необходимо найти положение барицентров тел (точки B_i)
- Векторы **b**_{i0} определяются следующим образом:

$$\mathbf{b}_{i0} = \frac{\sum_{j=1}^{n} \mathbf{d}_{ij} m_j}{M}$$

где M – масса всей системы.

Тензоры инерции дополненных тел

 Вычислить тензоры инерции дополненных тел относительно предшествующей шарнирной точки

$$\mathbf{K}_i = \mathbf{J}_i + \sum_{k=1}^n m_k (\mathbf{d}_{ik}^2 \mathbf{E} - \mathbf{d}_{ik} \mathbf{d}_{ik}),$$

Обобщенные координаты

Выбор обобщенных координат для каждого шарнира:

 $q_{11}, q_{12}, q_{13}, q_{21}, q_{22}, q_{23}, q_{31}.$

Кафедра ТМ (СГАУ)

Универсальные шарниры

Матрицы преобразования координат

 $\mathbf{A}^{01}(q_{11}, q_{12}, q_{13}), \quad \mathbf{A}^{12}(q_{21}, q_{22}, q_{23}), \quad \mathbf{A}^{23}(q_{31}).$

Кафедра ТМ (СГАУ)

Универсальные шарниры

Векторы $\mathbf{p}_{lpha i}$

Для каждого шарнира определяется набор векторов $\mathbf{p}_{lpha j}^{(i^-(lpha))}$, $j=1,\ldots,n_{lpha}$

Формирование матрицы ${f p}$

Кафедра ТМ (СГАУ)

Построение тензоров \mathbf{K}_{ij}

$$\mathbf{K}_{ij} = \begin{cases} \mathbf{K}_i, & i = j, \\ M(\mathbf{b}_{j0} \cdot \mathbf{d}_{ij}\mathbf{E} - \mathbf{b}_{j0}\mathbf{d}_{ij}), & s_i < s_j, \\ M(\mathbf{d}_{ji} \cdot \mathbf{b}_{i0}\mathbf{E} - \mathbf{d}_{ji}\mathbf{b}_{i0}), & s_j < s_i, \\ 0, & \mathsf{в} \text{ других случаях.} \end{cases}$$
(31)

$$\mathbf{K}_{i} = \mathbf{J}_{i} + \sum_{k=1}^{n} m_{k} (\mathbf{d}_{ik}^{2} \mathbf{E} - \mathbf{d}_{ik} \mathbf{d}_{ik}), \ i = 1, \dots, n.$$
(32)

Построение векторов \mathbf{M}'_i

$$\mathbf{M}'_{i} = -\boldsymbol{\omega}_{i} \times \mathbf{K}_{i} \cdot \boldsymbol{\omega}_{i} - M \left[\sum_{j:s_{i} < s_{j}} \mathbf{d}_{ij} \times (\boldsymbol{\omega}_{j} \times (\boldsymbol{\omega}_{j} \times \mathbf{b}_{j0})) + \mathbf{b}_{i0} \times \left(\sum_{j:s_{j} < s_{i}} \boldsymbol{\omega}_{j} \times (\boldsymbol{\omega}_{j} \times \mathbf{d}_{ji}) - \ddot{\mathbf{r}}_{0} \right) \right] - \sum_{j:s_{i} \leq s_{j}} \mathbf{d}_{ij} \times \mathbf{F}_{j}, \ i = 1, \dots n.$$

Построение матрицы А

$$\mathbf{A} = (\mathbf{pT}) \cdot \mathbf{K} \cdot (\mathbf{pT})^T$$

Все координатные столбцы $\mathbf{p}_{\alpha i}$ и тензоры \mathbf{K}_{ij} должны быть записаны в одной системе коодинат.

$$\mathbf{pT} = \begin{bmatrix} \mathbf{p}_{11} & 0 & 0 \\ \mathbf{p}_{12} & 0 & 0 \\ \mathbf{p}_{13} & 0 & 0 \\ 0 & \mathbf{p}_{21} & 0 \\ 0 & \mathbf{p}_{22} & 0 \\ 0 & \mathbf{p}_{23} & 0 \\ 0 & 0 & \mathbf{p}_{31} \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -\mathbf{p}_{11} & -\mathbf{p}_{11} & -\mathbf{p}_{11} \\ -\mathbf{p}_{12} & -\mathbf{p}_{12} & -\mathbf{p}_{12} \\ -\mathbf{p}_{13} & -\mathbf{p}_{13} & -\mathbf{p}_{13} \\ 0 & -\mathbf{p}_{21} & -\mathbf{p}_{21} \\ 0 & -\mathbf{p}_{22} & -\mathbf{p}_{22} \\ 0 & -\mathbf{p}_{23} & -\mathbf{p}_{23} \\ 0 & 0 & -\mathbf{p}_{31} \end{bmatrix}$$

Произведение $(\mathbf{pT}) \cdot \mathbf{K}$

$$\begin{bmatrix} -\mathbf{p}_{11} & -\mathbf{p}_{11} & -\mathbf{p}_{11} \\ -\mathbf{p}_{12} & -\mathbf{p}_{12} & -\mathbf{p}_{12} \\ -\mathbf{p}_{13} & -\mathbf{p}_{13} & -\mathbf{p}_{13} \\ 0 & -\mathbf{p}_{21} & -\mathbf{p}_{21} \\ 0 & -\mathbf{p}_{22} & -\mathbf{p}_{22} \\ 0 & -\mathbf{p}_{23} & -\mathbf{p}_{23} \\ 0 & 0 & -\mathbf{p}_{31} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{K}_{11} & \mathbf{K}_{12} & \mathbf{K}_{13} \\ \mathbf{K}_{21} & \mathbf{K}_{22} & \mathbf{K}_{23} \\ \mathbf{K}_{31} & \mathbf{K}_{32} & \mathbf{K}_{33} \end{bmatrix} = \begin{bmatrix} \mathbf{k}_{11} & \mathbf{k}_{12} & \mathbf{k}_{13} \\ \mathbf{k}_{21} & \mathbf{k}_{22} & \mathbf{k}_{23} \\ \mathbf{k}_{31} & \mathbf{k}_{32} & \mathbf{k}_{33} \\ \mathbf{k}_{41} & \mathbf{k}_{42} & \mathbf{k}_{43} \\ \mathbf{k}_{51} & \mathbf{k}_{52} & \mathbf{k}_{53} \\ \mathbf{k}_{61} & \mathbf{k}_{62} & \mathbf{k}_{63} \\ \mathbf{k}_{71} & \mathbf{k}_{72} & \mathbf{k}_{73} \end{bmatrix}$$

$$\mathbf{k}_{11} = -\mathbf{p}_{11} \cdot (\mathbf{K}_{11} + \mathbf{K}_{21} + \mathbf{K}_{31})$$

Координатная форма в базисе 0

$$\mathbf{k}_{11}^{(0)} = -\mathbf{p}_{11}^{(0)T} (\mathbf{K}_{11}^{(0)} + \mathbf{K}_{21}^{(0)} + \mathbf{K}_{31}^{(0)})$$

Размерность матрицы \mathbf{k}_{11} – 1х3

Кафедра ТМ (СГАУ)

Формирование матрицы А

$$\begin{split} \mathbf{A} &= \begin{bmatrix} \mathbf{k}_{11} & \mathbf{k}_{12} & \mathbf{k}_{13} \\ \mathbf{k}_{21} & \mathbf{k}_{22} & \mathbf{k}_{23} \\ \mathbf{k}_{31} & \mathbf{k}_{32} & \mathbf{k}_{33} \\ \mathbf{k}_{41} & \mathbf{k}_{42} & \mathbf{k}_{43} \\ \mathbf{k}_{51} & \mathbf{k}_{52} & \mathbf{k}_{53} \\ \mathbf{k}_{61} & \mathbf{k}_{62} & \mathbf{k}_{63} \\ \mathbf{k}_{71} & \mathbf{k}_{72} & \mathbf{k}_{73} \end{bmatrix} \begin{bmatrix} -\mathbf{p}_{11} & -\mathbf{p}_{12} & -\mathbf{p}_{13} & 0 & 0 & 0 & 0 \\ -\mathbf{p}_{11} & -\mathbf{p}_{12} & -\mathbf{p}_{13} & -\mathbf{p}_{21} & -\mathbf{p}_{22} & -\mathbf{p}_{23} & 0 \\ -\mathbf{p}_{11} & -\mathbf{p}_{12} & -\mathbf{p}_{13} & -\mathbf{p}_{21} & -\mathbf{p}_{22} & -\mathbf{p}_{23} & -\mathbf{p}_{31} \end{bmatrix} = \\ & = \begin{bmatrix} -(\mathbf{k}_{11} + \mathbf{k}_{12} + \mathbf{k}_{13}) \cdot \mathbf{p}_{11} & -(\mathbf{k}_{11} + \mathbf{k}_{12} + \mathbf{k}_{13}) \cdot \mathbf{p}_{11} & \dots & -\mathbf{k}_{13} \cdot \mathbf{p}_{31} \\ -(\mathbf{k}_{21} + \mathbf{k}_{22} + \mathbf{k}_{23}) \cdot \mathbf{p}_{11} & -(\mathbf{k}_{11} + \mathbf{k}_{12} + \mathbf{k}_{13}) \cdot \mathbf{p}_{11} & \dots & -\mathbf{k}_{13} \cdot \mathbf{p}_{31} \\ & \vdots & \vdots & \vdots & \vdots \\ -(\mathbf{k}_{11} + \mathbf{k}_{12} + \mathbf{k}_{13}) \cdot \mathbf{p}_{11} & -(\mathbf{k}_{11} + \mathbf{k}_{12} + \mathbf{k}_{13}) \cdot \mathbf{p}_{11} & \dots & -\mathbf{k}_{13} \cdot \mathbf{p}_{31} \end{bmatrix} \end{split}$$

 $a_{11} = -(\mathbf{k}_{11} + \mathbf{k}_{12} + \mathbf{k}_{13}) \cdot \mathbf{p}_{11}$ – число (результат скалярного произведения). Размерность матрицы $\mathbf{A} - N \times N$

Формирование матрицы В

Матрица В – столбец $N \times 1$, где N – число степеней свободы системы:

$$\mathbf{B} = -(\mathbf{pT})\left(\mathbf{K}(\mathbf{T}^T oldsymbol{f} - \dot{oldsymbol{\omega}}_0 \mathbf{1}_n) + \mathbf{M}' + \mathbf{M}
ight) - \mathbf{pY}$$

При формировании матрицы В все составляющие матрицы должны быть записаны в одной системе координат, например в $Ox_0y_0z_0$.

Блок схема программы

$$\mathbf{q}^{0}, \dot{\mathbf{q}}^{0}$$
 Сборка \mathbf{A}, \mathbf{B} $\xrightarrow{a1}$ Решение СЛУ $\ddot{\mathbf{q}}$ ODE solve (ode45,ode113) $\dot{\mathbf{q}}$ $\mathbf{q}^{k+1}, \dot{\mathbf{q}}^{k+1}$

- Файл-скрипт main.m
 Формирование начальных условий. Вызов функции-интегратора (ode45, ode113).
- Файл-функция правых частей
 Формирование матриц А, В. Решение системы линейных уравнений (определение q).